Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 56(1): 33, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649596

ABSTRACT

Alzheimer's disease (AD) is the most prevalent type of dementia caused by the accumulation of amyloid beta (Aß) peptides. The extracellular deposition of Aß peptides in human AD brain causes neuronal death. Therefore, it has been found that Aß peptide degradation is a possible therapeutic target for AD. CathD has been known to breakdown amyloid beta peptides. However, the structural role of CathD is not yet clear. Hence, for the purpose of gaining a deeper comprehension of the structure of CathD, the present computational investigation was performed using virtual screening technique to predict CathD's active site residues and substrate binding mode. Ligand-based virtual screening was implemented on small molecules from ZINC database against crystal structure of CathD. Further, molecular docking was utilised to investigate the binding mechanism of CathD with substrates and virtually screened inhibitors. Localised compounds obtained through screening performed by PyRx and AutoDock 4.2 with CathD receptor and the compounds having highest binding affinities were picked as; ZINC00601317, ZINC04214975 and ZINCC12500925 as our top choices. The hydrophobic residues Viz. Gly35, Val31, Thr34, Gly128, Ile124 and Ala13 help stabilising the CathD-ligand complexes, which in turn emphasises substrate and inhibitor selectivity. Further, MM-GBSA approach has been used to calculate binding free energy between CathD and selected compounds. Therefore, it would be beneficial to understand the active site pocket of CathD with the assistance of these discoveries. Thus, the present study would be helpful to identify active site pocket of CathD, which could be beneficial to develop novel therapeutic strategies for the AD.


Subject(s)
Cathepsin D , Molecular Docking Simulation , Humans , Binding Sites , Cathepsin D/metabolism , Cathepsin D/chemistry , Ligands , Alzheimer Disease/metabolism , Catalytic Domain , Protein Binding , Models, Molecular
2.
Sci Rep ; 14(1): 9540, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664447

ABSTRACT

Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.


Subject(s)
Apigenin , Apoptosis , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , MicroRNAs , Triple Negative Breast Neoplasms , Vorinostat , Apigenin/pharmacology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Apoptosis/drug effects , Vorinostat/pharmacology , Epigenesis, Genetic/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Female , Cell Movement/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
3.
Ann Pediatr Cardiol ; 15(1): 77-79, 2022.
Article in English | MEDLINE | ID: mdl-35847388

ABSTRACT

An 11-year-old girl presented with chronic cough and recurrent hemoptysis. On examination, she had features of right heart failure and cyanosis, with severe pulmonary hypertension on echocardiogram. Computed tomography pulmonary angiography showed aneurysmal dilatations of the pulmonary artery with elevated erythrocyte sedimentation rate and C-reactive protein and positive human leukocyte antigen B51. A diagnosis of Hughes-Stovin syndrome (vascular variant of Behcet's syndrome) was confirmed, and she was started on immunosuppression, on which there was improvement.

4.
Inform Med Unlocked ; 24: 100597, 2021.
Article in English | MEDLINE | ID: mdl-34075338

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been responsible for the cause of global pandemic Covid-19 and to date, there is no effective treatment available. The spike 'S' protein of SARS-CoV-2 and ACE2 of the host cell are being targeted to design new drugs to control Covid-19. Similarly, a transmembrane serine protease, TMPRSS2 of the host cell plays a significant role in the proteolytic cleavage of viral 'S' protein helpful for the priming of ACE2 receptors and viral entry into human cells. However, three-dimensional structural information and the inhibition mechanism of TMPRSS2 is yet to be explored experimentally. Hence, we have used a molecular dynamics (MD) simulated homology model of TMPRSS2 to study the inhibition mechanism of experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride (BHH) using molecular modeling techniques. Prior to docking, all three inhibitors were geometry optimized by semi-empirical quantum chemical RM1 method. Molecular docking analysis revealed that Camostat mesylate and its structural analogue Nafamostat interact strongly with residues His296 and Ser441 present in the catalytic triad of TMPRSS2, whereas BHH binds with Ala386 along with other residues. Comparative molecular dynamics simulations revealed the stable behavior of all the docked complexes. MM-PBSA calculations also revealed the stronger binding of Camostat mesylate to TMPRSS2 active site residues as compared to Nafamostat and BHH. Thus, this structural information could be useful to understand the mechanistic approach of TMPRSS2 inhibition, which may be helpful to design new lead compounds to prevent the entry of SARS-Coronavirus 2 in human cells.

5.
Sensors (Basel) ; 21(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540615

ABSTRACT

In this paper, we design algorithms for indoor activity recognition and 3D thermal model generation using thermal images, RGB images, captured from external sensors, and the internet of things setup. Indoor activity recognition deals with two sub-problems: Human activity and household activity recognition. Household activity recognition includes the recognition of electrical appliances and their heat radiation with the help of thermal images. A FLIR ONE PRO camera is used to capture RGB-thermal image pairs for a scene. Duration and pattern of activities are also determined using an iterative algorithm, to explore kitchen safety situations. For more accurate monitoring of hazardous events such as stove gas leakage, a 3D reconstruction approach is proposed to determine the temperature of all points in the 3D space of a scene. The 3D thermal model is obtained using the stereo RGB and thermal images for a particular scene. Accurate results are observed for activity detection, and a significant improvement in the temperature estimation is recorded in the 3D thermal model compared to the 2D thermal image. Results from this research can find applications in home automation, heat automation in smart homes, and energy management in residential spaces.


Subject(s)
Housing , Internet of Things , Temperature , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...